1,1,3,3,3-Pentafluoro-2pentafluorophenylpropene Oxide. Precursor for Novel Phosphonates and Ylides

Alexander A. Kadyrov*

A. N. Nesmeyanov Institute of Organo-Element Compounds, Russian Academy of Sciences, 28 Vavilova, 117813 Moscow, Russia

Gerd-Volker Röschenthaler*

Institut für Anorganische und Physikalische Chemie, Universität Bremen, Leobener Strasse, D-28334 Bremen, Germany

Received 3 June 1996

ABSTRACT

1,1,3,3,3-Pentafluoro-2-pentafluorophenylpropene oxide reacted with triethyl phosphite to give the ylide $C_{o}F_{5}(CF_{3})C = P(OEt)_{3}$. Hydrolysis yielded the phosphonate $C_{o}F_{5}(CF_{3})CHP(O)(OEt)_{2}$, which was dehydrofluorinated using $Et_{3}N \cdot BF_{3}$ to form the vinyl phosphonate $C_{o}F_{5}(CF_{2})=)CP(O)(OEt)_{2}$, a compound available also directly from the starting epoxide and diethyl trimethylsilyl phosphite. The vinyl phosphonate and diethyl trimethylsilyl phosphite furnished a 2:1 mixture of (Z) and (E) bisphosphonates together with fluorotrimethylsilane. Thermolylsis of the ylide gave diethyl phosphorofluoridate and 1,1-difluoro-2-pentafluorophenyl-but-1-ene. © 1997 John Wiley & Sons, Inc.

INTRODUCTION

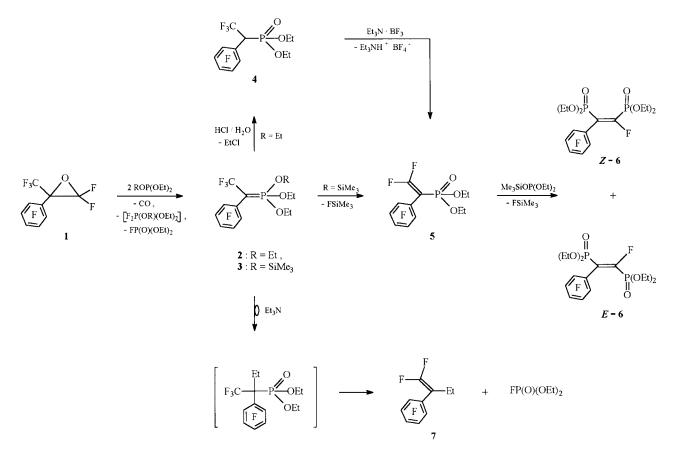
Epoxides of a few terminal perfluoroolefins $CF_3(R^1)C = CF_2[R^1 = CF_3, C(O)OEt, P(O)(OMe)_2]$ reacted with trialkyl phosphites $P(OR^2)_3(R^2 = Me, Et)$

under C-C and C-O bond cleavage to give the vlides $CF_3(R^1)C = P(OR^2)_3$ and decomposition products of the thermally unstable phosphorane intermediate $FC(O)P(F)(OR^2)_3$, namely, diffuorophosphoranes $F_2P(OR^2)_3$ and carbon monoxide [1]. Diethyl trimethylsilyl phosphite, Me₃SiOP(OEt)₂, and perfluoroisobutene oxide gave fluorotrimethylsilane, the fluorophosphate $FP(O)(OEt)_2$, and the perfluorovinyl phosphonate $CF_2 = C(CF_3)P(O)(OEt)_2$, which could be prepared by different routes [2,3]. Dimeric hexafluorothioacetone and triethyl phosphite gave the ylide $(CF_3)_2 C = P(OEt)_3$ [4], which was hydrolyzed to furnish (CF₃)₂CHP(O)(OEt)₂ [4] and dehydrofluorinated using $Et_3N \cdot BF_3$ to form $CF_2 = C(CF_3)$ - $P(O)(OEt)_2$ [2]. We report here the reactions of the title compound with triethyl and diethyl trimethylsilvl phosphite.

RESULTS AND DISCUSSION

On reaction of 1,1,3,3,3-pentafluoro-2-pentafluorophenyl-propene oxide [6] (1) with triethyl phosphite in a 1:2 ratio, the ylide 2 is formed as a colorless liquid besides carbon monoxide, triethoxydifluorophosphorane [8], and diethyl phosphorofluoridate. Hydrolysis using concentrated hydrogen chloride afforded phosphonate 4, which could be dehydrofluorinated by $Et_3N \cdot BF_3$ to furnish vinylphosphonate 5.

^{*}To whom correspondence should be addressed.


The latter compound was also obtained when epoxide 1 was reacted with diethyl trimethylsilyl phosphite. In this case, fluorotrimethylsilane, diethyl phosphorofluoridate, and carbon monoxide were observed. The ³¹P-NMR spectrum of the reaction mixture showed a signal at $\delta = 40.5$, characteristic for the ylide $CF_3(C_6F_5)C = P(OSiMe_3)(OEt)_2$, 3, besides other signals. In a second step, diethyl trimethylsilyl phosphite and the vinylphosphonate 5 gave a 2:1 mixture of (Z) and (E) bisphosphonates 6. On heating ylide 2 to 100°C in the presence of a catalytic amount of triethylamine, diethyl phosphorofluoridate and 1,1-difluoro-2-pentafluorophenyl-but-1-ene (7) were formed in low yield. (Butene 7 could be characterized by mass spectrometry only.) The Oethyl group probably was transferred to the ylide carbon forming an intermediate, in which the P-C bond was cleaved. In the case of $(CF_3)_2 C = P(OMe)_3$, a rearrangement took place to give the thermally stable phosphonate (CF₃)₂CMeP(O)(OMe)₂ [4]. All new compounds were colorless liquids (Scheme 1).

The NMR data of the ylide [1,4,9] and the phosphonates [1,2] were consistent with the constitution proposed. The larger ${}^{3}J_{PF}$ value of 28.1 Hz was assigned to the *trans* vinylic fluorine nuclei in phosphonate **5** as in $CF_2 = C(CF_3)P(O)(OSiMe_3)_2$ [3]. The same assumption was made for bisphosphonate **6**, where the larger *trans* coupling constant (${}^{3}J_{PF} = 40.9$ Hz) is due to the (*Z*) form.

EXPERIMENTAL

The appropriate precautions in handling moisture and oxygen-sensitive compounds were observed throughout this work. Elemental analysis: Mikroanalytisches Laboratorium Beller, Göttingen. MS: MAT 8222 (EI, electron energy 70 eV). NMR: AC 80, operating at 80.13 MHz (¹H, internal standard TMS), 75.39 MHz (¹⁹F, internal standard CCl₃F), and 32.44 MHz (³¹P, external standard 85% H₃PO₄). Compound 1 [6] and Me₃SiOP(OEt)₂ [7] were prepared according to literature procedures.

1-Pentafluorophenyl-2,2,2-trifluoroethylidene-triethoxyphosphorane (2). Triethyl phosphite (14.8 g, 89 mmol) and 14.0 g (44.5 mmol) of 1 were heated at 60°C for 20 hours. Distillation gave 11.5 g (62%) of 2 (bp 86–88°C/0.01 Torr). MS: m/e (%): 414 (M⁺,

20), 395 (M⁺ - F, 4), 369 (M⁺ - OC₂H₅, 12), 341 (M⁺ - OC₂H₅ - C₂H₄, 4), 338 (M⁺ - HF - 2 C₂H₄, 6), 331 (M⁺ - 2 C₂H₄ - C₂H₃, 14), 313 (M⁺ - 2 C₂H₄ - OC₂H₅, 25), 290 (M⁺ - CF₃ - C₂H₄ - C₂H₃, 100), 230 (C₃F₃P(O)(OC₂H₅)⁺, 14), 179 (CF₃P(OH)₂-(OC₂H₅)⁺, 14), 167 (C₆F₅⁺, 1), 69 (CF₃⁺, 2), and other fragments. NMR: ¹H: δ = 1.12 (CH₃, t, ³J_{HH} = 7.0 Hz), 4.1 (CH₂, m); ¹⁹F: δ = -47.0 (CF₃, 3 F, dt, ³J_{PF} = 8.3, ⁵J_{FF} = 5.5 Hz), -141.8, -144.6 (F¹, F², m), -166.5 (F⁵, m), -168.5, -171.0 (F³, F⁴, m); ³¹P: δ = 41.2. Anal. calcd for C₁₄H₁₅F₈O₃P (414.23): C, 40.59; H, 3.65; F, 36.69; P, 7.48. Found: C, 40.10; H, 3.73; F, 36.70; P, 7.72.

1-Pentafluorophenyl-2,2,2-trifluoroethyl Diethyl Phosphonate (4). Conc. hydrochloric acid (5 mL) was added dropwise to 4.14 g (10 mmol) of phosphorane 2, and the mixture was stirred for 3 hours. After three extractions with 10 mL of diethyl ether each time, distillation gave 3.44 g (89%) phosphonate 4 (bp 101–103°C/10 Torr). MS: m/e (%): 386 (M+, 16), 367 (M $^+$ – F, 14), 340 (M $^+$ – F – C₂H₃, 22), 313 (M^+ – OC_2H_5 – C_2H_4 , 10), 276 (M^+ – CF_3 – $C_2H_3 - CH_2$, 12), 230 ($C_3F_3P(O)(OC_2H_5)^+_2$, 100), 199 $(C_2F_2P(O)(OC_2H_5)_2^+, 23), 109 (C_2H_5OP(O)OH^+, 81),$ 84 ($FP(OH)(O)H^+$, 56), and other fragments. NMR: ¹H: δ = 1.3 (CH₃, 6 H, q, ³J_{HH} = 7.2 Hz), 3.9–4.4 (CH₂, AB-parts of 2 ABM₃X-systems, 4 H, and CH, 1 H); ¹⁹F: $\delta = -65.3$ (CF₃, 3 F, dd, ³ $J_{PF} = 17.5$, ³ $J_{HF} = 7.8$ Hz), -138.5, -145.3 (F¹, F², m), -156.3 (F⁵, m), -165.5 (F³, F⁴, m). ³¹P: $\delta = 3.5$. Anal. calcd for C₁₂H₁₁F₈O₃P (386.18): C, 37.32; H, 2.87; F, 39.36; P, 8.02. Found: C, 37.22; H, 3.03; F, 39.00; P, 7.54.

1-Pentafluorophenyl-2,2-difluoroethenyl Diethyl Phosphonate (5). Phosphonate 4 (3.50 g, 9 mmol) and 1.52 g (9 mmol) $Et_3N \cdot BF_3$ in 5 mL diethyl ether were refluxed for 5 hours. After filtration to remove $Et_3NH^+ \cdot BF_4^-$ distillation of the filtrate gave 2.80 g (80%) of 5 (bp 77-79°C/0.1 Torr). In a separate experiment, diethyl trimethylsilyl phosphite (4.20 g, 20 mmol) and 3.14 g (10 mmol) of 1 were stirred at ambient temperature for 3 hours. Distillation gave 3.11 g (85%) of 5. MS: m/e (%): 366 (M⁺, 51), 340 (M⁺ – C_2H_2 , 12), 338 (M⁺ - C_2H_4 , 7), 318 (M⁺ - C_2H_5 -F, 38), 293 (M $^{\scriptscriptstyle +}~-~OC_2H_5$ $-~C_2H_4$, 7), 290 (M $^{\scriptscriptstyle +}~-~CF_2$ - C₂H₂, 100), 199 (M⁺ - C₆F₅, 7), 179 (M⁺ - C₆F₅ - HF, 17), 109 (C₂H₅OP(O)OH⁺, 9), 81 (C₂F₃⁺, 13), and other fragments. ¹H: $\delta = 1.80$ (CH₃, 6 H, t, ³J_{HH} = 6.9 Hz), 4.69 (CH₂, 4 H, ${}^{3}J_{PH}$ = 7.1 Hz); ${}^{19}F: \delta$ = -68.1 (=CF₂, *trans* to phosphorus, 1 F, dd, ${}^{2}J_{FF}$ = 12.2, ${}^{3}J_{PF} = 28.1 \text{ Hz}$), $-69.2 (= CF_{2}$, *cis* to phosphorus, 1 F, dd, ${}^{3}J_{PF} = 12.2$ Hz), -143.2, -144.0 (F¹, F², m), -159.2 (F⁵, m), -168.6 (F³, F⁴, m); ³¹P: $\delta = 7.9$. Anal. calcd for C₁₂H₁₀F₇O₃P (366.17): C, 39.36; H, 2.75; F, 36.32; P, 8.46. Found: C, 39.30; H, 2.89; F, 36.50; P, 8.36.

(Z/E)-1,2-bis(Diethylphosphonato)-1-fluoro-2pentafluorophenylethene (Z/E-6). Diethyl trimethylsilyl phosphite (0.40 g, 1.9 mmol) and 0.68 g (1.9 mmol) of 5 were allowed to react for 4 hours at 60°C. Distillation gave 0.70 g (78%) of Z/E-6 (Z:E = 2:1) (bp 153–154°C/0.01 Torr). MS: *m/e* (%): 484 (M⁺, 100), 439 (M⁺ - OC₂H₅, 95), 347 (M⁺ -P(O)(OC₂H₅)₂, 30), and other fragments. Z-isomer: ¹⁹F: δ = -82.5 (= CF, 1 F, ddt, ²J_{PF} = 105.6, ³J_{PF} = 40.9, ⁵J_{FF} = 4.7 Hz), -143.2 (F¹, F², m), 157.0 (F⁵, m), 166.3 (F³, F⁴, m); ³¹P: δ = -3.0 (PC(C₆F₅)), 4.9 (PCF). *E*-isomer: δ = -91.3 (= CF, 1 F, dd, ²J_{PF} = 102.6, ³J_{PF} = 11.1 Hz), -142.3, (F¹, F², m), -157.0 (F⁵, m), -167.2 (F³, F⁴, m); Anal. calcd for C₁₆H₂₀F₆O₆P₂ (484.30): C, 39.68; H, 4.16; F, 23.54; P, 12.79. Found: C, 38.81; H, 4.01; F, 22.90; P, 11.57.

1,1-Difluoro-2-pentafluorophenyl-but-1-ene (7). Compound 1 (0.62 g, 2 mmol) was heated in the presence of 0.01 g Et₃N at 100°C for 1 hour. From GC/MS investigation, diethyl phosphorofluorodate and butene 7 could be detected. MS: m/e (%): 258 (M⁺, 69), 243 (M⁺ - CH₃, 100), 223 (M⁺ - CH₃ - HF, 8), 193 (M⁺ - CH₃ - CF₂, 48), 181 (M⁺ - C₂H₃ - CF₂, 15), 143 (C₄F₅⁺, 7), and other fragments.

ACKNOWLEDGMENT

The authors acknowledge gratefully the financial support by the Deutsche Forschungsgemeinschaft.

REFERENCES

- [1] A. A. Kadyrov, G. G. Bargamov, E. M. Rokhlin, J. Fluorine Chem., 65, 1993, 195.
- [2] A. A. Kadyrov, E. M. Rokhlin, *Izv. Akad. Nauk SSSR*, Ser. Khim., 1981, 2583.
- [3] J. Heine, G.-V. Röschenthaler, *Chemiker-Ztg.*, 110, 1986, 91.
- [4] W. J. Middleton, W. H. Sharkey, J. Org. Chem., 30, 1965, 1384.
- [5] A. A. Kadyrov, E. M. Rokhlin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1983, 1353.
- [6] R. A. Bekker, G. V. Asratyan, B. I. Dyatkin, Zh. Org. Chem., 9, 1973, 1635.
- [7] M. Sekine, K. Okimoto, K. Yamada, T. Hata, J. Org. Chem., 46, 1981, 2097.
- [8] S. M. Williamson, O. D. Gupta, J. M. Shreeve, *Inorg. Synth.*, 24, 1986, 62.
- [9] O. I. Kolodyazhnyi, Tetrahedron, 52, 1996, 1855.